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Abstract 
The purpose of this paper is essentially tutorial: to help recast the classical text- 
book chapter on gear trains in a modern vein. Hopefully this involves general 
methods, avoiding ad-hoc reasoning and unnecessary complexity. We believe 
that recently developed methods [1,2, 4], employing a graph representation of 
kinematic structure, are suitable for this purpose. The procedures for kinematic 
analysis, force analysis, and power-flow determination are outlined in simple step 
fashion, using, for purposes of illustration, a fairly complex, coupled epicyclic 
drive shown by Glover [5]. It is hoped that the simplicity of the method will com- 
mend itself both to the engineering student as well as to the practicing engineer. 

Zusammenfassung-- Kinematik und Statik eines gekoppelten epizyklischen 
Zahnradgetriebes: F. Freudenstein und A. T. Yang. 
Der Zweck dieses Aufsatzes ist ein vorwiegend methodischer: er soil helfen, die 
klassischen Lehrbuchabschnitte 0ber R/idertriebe in eine moderne Fassung 
umzuformen. Dies bedingt allgemeine Methoden unter Vermeidung unmofivierter 
Vorgangsweisen und unn6tiger Verwicklungen. Wir giauben, dab die kfirzlich 
entwickelten Methoden [1,2, 4], welche kinematische Strukturen durch Graphen 
darstellen, for diesen Zweck geeignet sind. Die Verfahrensweisen zur kine- 
matischen Analyse, zur Bestimmung der KrMte und zur Ermittlung des 
Kraftflusses werden stufenweise auseinandergesetzt, wobei zur Erl&uterung ein 
ertr~iglich komplexes, yon J. H. Glover [5] betrachtetes gekoppeltes Planetenrad- 
getriebe herangezogen wird. Es ist zu hoffen, dab die Einfachheit der Methode 
sowohl den Ingenieurstudenten als auch den praktizierenden Ingenieur 
ansprechen wird. 

Pe~oMe--KnneMaTaxa x craTxKa ~n~uxxJmqecxol~ nerc~,m c uBum~mpw~ npfMo3y6~,. 
xo~ecaMi~, d~. ~po~esurre~b~ x A. ~lv, r. 
L[eJ1lb 3TO~ CTaT]bH ~ 3TO HO cyI~CCTBy KOHCyJIbTaUILq: HOMOtlb Hal]HCaT]b 3aJ[IOBO B CO]B~MeJS[HOM ~y~¢ 
r~any ¢naccmleCKOrO y q e 6 m ~ a ,  nocBimesHy~3 3y6qaTblM nepe~a~laM. ~ ikneqeT 3a co6oR npWMCnetme 
O~UlllX MCTO]IOB H H36erasHe cneumun , so ro  p a c c y - ~ e m m  H HcHy'~HOI~ C/IO~t'HOCTH. MI~ yBeDCHI~, wro 
He2IaBHO paBBHTtde MeTOHbl [1, 2, 4], rrpsMetmtomae j1HarpaMMHOe H 3 4 ~ H H C  KE[HCMaTE~CCKO~ CTpy- 
KTypbl, COOTBeTCTBylOT 3TOil ueJ~. HaMeqeHu MeTOJmKX KI411eMaTHtleCKOFO aI4aJllP~a, allaJ-i]ll3a ClStl H 
olIpe~IcJleHH~i HOTOKa MOtI.IHOCTH C IIpHMeHeHHeM ~ H  KRtlIOCTpaUY, H j loc'raTo,iHo CJIO]¢HOR Z ~ C C -  
Eott nepeaa~m, onacaauofl ~x.  F,rlonepoM [5]. 

ABTOpbl HaAC~OTCX, 'tTO llpOCTOTa MeTO]la 6yncr  noJ]e3Ha ~ry~eHTaM Textu~ecgHx 3aBe~eH1~i H 
I I ~ H O H a J I b H b l M  R~ceHepaM. 

*Professor of Mechanical Engineering, Columbia University, New York, N.Y. I0027, U.S.A. 
~Professor, Department of Mechanical Engineering, University of California, Davis, Calif. 95616, U.S.A. 

263 



264 

1. Introduction 

IN RECENT years, there has been an upsurge of interest in planetary gear trains. The 
many valuable publications on the subject [ l -  11 ] (we can list only very fewt) recognize 
the need for a systematic development. The following is dedicated towards the same 
goal. The emphasis is on generality with a minimum of human decision-making, thereby 
freeing the engineer for the more creative aspects of gear design and resulting in 
methods which are suitable for automatic computation. It is hoped also that the engin- 
eering student, who has too often in the past been repelled by the archaic nature of the 
usual textbook treatment of the subject, may find some challenge in the present 
approach. 

2. Graph Representation of Kinematic Structure 
Essentially this is a schematic diagram which answers the question: "which link is 

connected to which other link by what kind of a joint (pair)". More precisely, we have: 

S tep  1 : K i n e m a t i c  S t ruc ture  
*Number each link (I, 2, 3 . . . .  ). 
* Label axes of turning pairs (a, b, c . . . .  ). 
*Represent each link by a correspondingly numbered point (vertex). 
*A gear mesh between two links is represented by a heavy line (geared edge) 
connecting the corresponding vertices. 

*A turning pair between two links is represented by a light line (turning edge) 
connecting the corresponding vertices: Label each turning edge according to its 
pair axis (a, b, c . . . .  ). 

* Identify the fixed link by drawing a small circle around the corresponding vertex 

The diagram defined in Step l is called a graph.  The size and shape of the diagram 
are immaterial; only the topology matters. 

Figure la shows a functional schematic of a coupled, epicyclic drive shown in 
Glover[5] as Drive # I I. In the following we shall refer to this drive simply as Glover 
# I I. Each link has been numbered and the different axes of the turning pairs identified. 

Figure lb shows the graph of the mechanism. As will be discussed later, when 
several planet gears are in parallel (e.g. 5 and 5' or 6 and 6') only one is shown in the 
graph. The others are kinematically redundant, but serve to distribute the load. 

The graph has certain characteristics, which are useful in analyzing gear trains and 
which may also be regarded as checks on the accuracy of Step l: 

C h e c k  # 1. The diagram (subgraph), consisting only of the turning edges and their 
endpoints, contains all the vertices of the graph, but no circuits (such a graph is called 
a tree). 

This is due to the constancy of the center distance between gears in mesh and the 
potentially unlimited, proportional rotations of all links. This implies that each gear 
has a turning pair concentric with its axis and that there can be no circuit involving 
turning pairs only. 

In Fig. lb. this subgraph (tree) consists of all turning edges, e.g. edges (35), (13), 
(14), (46), (42) and the 6 vertices. 

tAn extensive bibliography is given by Z. Levai: Bibliography of planetary mechanism, BME, Budapest, 
1969. 
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5 (PLANET1-- / - -  4 (GEAR CARRIER 

. . . . .  LI;22;212£2"" 
TERNAL GEARS : 60 

Figure la. Functional schematic of coupled epicyclic drive indicated as Drive #11 
in Ref. [5] (Giover). 

Check #2. Each geared edge can be associated with a fundamental circuit of the 
graph. 

We shall call these fundamental circuits f-circuits for short. Each f-circuit consists 
of one geared edge and the turning edges connecting the endpoints of the geared edge. 
There is only one way of selecting these turning edges, if the convention is adopted 
that when traversing the edges of the tree to go from one end-point to the other, no 
turning edge may be retraced (in the language of graph theory, the tree path is unique). 

For example, in Fig. 1 b, the f-circuits are: 

Circuit I: (15) (53) (31) 
Circuit II: (25) (53) (31) (14) (42) 
Circuit III: (62) (24) (46) 
Circuit IV: (36) (64) (41) (13) 

3 5 

6 

2 (0UTPUT) 

Figure lb. Graph of epioyclic drive shown in Fig. la. 
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Check #3. In each fundamental circuit, there is exactly one vertex, the turning 
edges incident at which represent different pair axes. It is called the transfer vertex. 

In each gear mesh, the gear carrier (also called the arm) maintains the constancy of 
the center distance between the gears. The vertex representing the gear carrier is 
incident at turning edges representing the pair axes of the meshing gears. This vertex 
is the transfer vertex. 

In Fig. lb, the transfer vertices are as follows: 

Circuit I: Vertex 3 (pair axes a, b) 
Circuit II: Vertex 3 (pair axes a, b) 
Circuit III: Vertex 4 (pair axes b, c) 
Circuit IV: Vertex 4 (pair axes b, c) 

Check #4. The diagram (subgraph) consisting only of the geared edges and their 
endpoints may have no circuits. 

Otherwise, special dimensions would be required for movability of the mechanism. 
Although such cases can occur, they are excluded in the present analysis. Circuits 
with only geared edges also can point to the existence of planet gears in parallel. For 
example, if gears 5' and 6' had been included in the graph shown in Fig. lb, the circuits 
(3-6-2-6'-3) and (1-5-2-5'-1) would have involved geared edges only. We therefore 
omit all but one of the identical gears (planets), the axes of which are turning-pair 
connected to the same member. 

Check #5. All turning edges having identical pair axes must .be connected (and can 
have no circuits). 

Otherwise the center distances could not remain constant. In Fig. lb, these are 
edges (31) (14) (42). 

Check #6. The degree-of-freedom equations for the gear train are: 

l = j r +  1 
Jr = jc + F 
L = j~ 

where l = number of links, Jr = number of turning pairs, Jc = number of gear pairs, 
L = number of fundamental circuits and F = degree of freedom of gear train. 

In Fig. Ib, for example, l = 6, j r  = 5,ja = L = 4 and F =  1. We conclude that this is a 
single-degree-of-freedom gear train. 

The first equation is obtained directly from the basic tree property: number of 
vertices of tree exceeds number of edges by unity. The other equations follow from the 
first equation and the freedom equations for mechanisms. 

We note that in the graph representation of kinematic structure, we do not dis- 
tinguish between internal and external gears and several gears may be part of one rigid 
link, and thus are represented by a single vertex. 

3 Kinematic Analysis 
We outline the procedure in terms of several steps. 

Step 2: Angular-Velocity Equations 
*Identify each fundamental circuit symbolically as (ij) (k), where i , j  represent the 
links containing the gears in mesh and k the gear carder (transfer vertex). 



* For  each fundamental circuit. The  angular-velocity equation is: 

oJt-- o~Nj i+  o ~ ( N z - -  1) = 0 
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(3.1) 

where toi, toj, tOk, denote the angular velocities of  links i, j ,  k and Nz = ---- Tj/Ti, 
where T~, Tj denote the number  of  teeth on gears i, j ,  respectively, and the ratio 
is positive or negative according as the gear mesh is internal or external 

There are as many equations of  type (3.1) as there are gear meshes (or f-circuits). 
The equation is readily derived by considering the motion relative to the arm: 

(co , -  ~ok)/(~oj- cok) = Nji. 

In Glover ' s  # 1 1 Drive (Fig. 1 b), the angular-velocity equations are: 

Fundamental circuit A ngular-velocity equations 

Circuit I: (15) (3) oJl - tot ,  N51 + ~(N51 - 1) = 0 
Circuit II: (25) (3) ~ - rover52 + to3(Nsz -- 1 ) = 0 (3.2) 
Circuit III:  (26) (4) ~ - toeN~ + to4(Ne2 -- 1 ) = 0 
Circuit IV: (36) (4) to3 - t O ,  ca + to4(Na3 - 1 ) = 0  

Check # 1. The  sum of the coefficients of  the angular velocities in each equation is 
zero. 
Check #2 .  Balance number  of  equations vs. number  of  unknowns. 

In Glover ' s  # 11 Drive,  link 4 is fixed, so that oJ4 = 0. Link 1 is the input link, the 
angular velocity of  which, col, is assumed known. This leaves 4 equations (equations 
(3.2)) in the 4 unknowns: w2, co3, cos, oJe. 

The  angular-velocity equations are linear, simultaneous algebraic equations. Their  
solution is outlined in the next step. 

Step 3: Solution o f  Angular-Velocity Equations 
* Solve the angular-velocity equations for the unknown angular velocities 
*Solution for single-degree-of-freedom gear trains based on Cramer 's  rule: 

LetA,a,  be the value of  the determinant of  the square matrix obtained by deleting 
the m th and n t~ columns of  the coefficient matrix of  the angular-velocity equations, 
including the terms containing the fixed link,f. 

Then the angular-velocity ratio of  links p, q is given by: 

c°....e.P= (_l)p+q :--.~!(q--f)rAP/I 
oJq I I q - f l  LAqfJ 

(3.3) 

For  example,  in the Glover  # 1 1 Drive, the (4 × 6) coefficient matrix is: 

I !  0 N51--1 0 --Nsl 2/ 
I N 5 2 -  1 0 --Ns~ 0 
1 0 N 6 ~ -  1 0 --Ne 
0 1 Ne3 - -  1 0 --N83] 
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F o r p  = 1, q = 2 , f =  4, we have 

i NSI -- 1 --Ns1 
N52-- 1 --N52 

A14 = 0 0 
1 0 

0 = --N51Ne2 -- Nm(N52 -- Ns1). 
- -  No2 
-N~II 

--N62 = N52N82. 
I i  N s l - - 1  --Ns1 Ns2-- 1 - N s z  

A24 = 0 0 

1 0 

From Equation (3.3) we obtain the angular velocity ratio 

~-~ ~_~ ~-~ ×~-2~ L~,J r~l'l --~ -~ ' -~  '~j ( ~ - ' )  -- ~ ~ a ,  

Similarly, we find that: 

o~[ox = 1/R 

a,,31o~1 = N ~ / ( N e z R )  (3.4) 

coJcot = [ 1 -- ( 1 -- Nsz)( N s J  N82)]/( R N52) 

os/oJt = 1/(RNez).  

The  gear ratios given in Glover ' s  # 11 Drive are as follows: 

Nsl = --20/20 = -- 1; Nrz = 20/60 = 
N52 = 20/60 = 3; N ~  = --20/20 = - 1 .  

This gives the following angular-velocity ratios: 

col:~:o~:co4:oJ~:oJr: = 1 5 : - 1 : 3 : 0 : - 9 : - 3  

Since the angular-velocity equations are unaffected if each angular velocity is 
increased by the same constant,  we can find the angular velocities when a link other  
than link 4 is held fixed, by adding to each angular velocity a constant equal to the 
negative of  the angular-velocity of  the new fixed link, as shown in the following table: 

Fixed link Angular-velocity ratios 

wl ~2 ~3 ~4 (05 ~ 

1 0 --16 --12 --15 --24 --18 
2 16 0 4 1 --8 --2 
3 12 --4 0 --3 --12 --6 
4 15 --1 3 0 --9 --3 
5 24 8 12 9 0 6 
6 18 2 6 3 - 6  0 
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4. Static Force and Torque Analysis 
We consider the case without friction. Before deriving the equations of equilibrium, 

we consider the forces and torques associated with a fundamental circuit: (0") (k). 
Details of the derivations can be found in Appendix I. 

Center distance, ao = ao~o denotes the vector distance from the axis of gear i to 
the axis of gear j;  ao = aa and ~ is a unit vector in the direction ofao. 

Unit normal, n represents a unit vector in the direction of a positive angular-velocity 
vector. 

Reactions associated with geared edge, ij 

Fo = tangential force exerted by gear i on gearj  
= Fo(~ o x n), withF o = Fj~ 

T o = torque exerted by Fo about axis of gearj 
= Ton, where T o = (aoFo)l(l -- No). 

(4.1a) 

(4.1 b) 

Reactions associated with turning edge, ik 

Ftk 

Fkt ~ -  

T t l  t 

tangential force exerted by gear i on carrier k 
Fo#io x n), with F~k = --Fk~ (4.1 c) 

force exerted by carder k on gear i 
--Fl~ (4.1 d) 

torque exerted by F,~ about fixed axis of gear carrier k 
Ttkn, where Tu~ = pFik (4. I e) 
and p is the distance between the fixed pair axis of link k and the pair 
axis represented by edge ik (i.e. p is either equal to ao or 0). 

Tkt ---- torque exerted by force Fk~ about axis of gear i 
~ 0 .  

External torques 

Tp = Tpn represents the external torque acting on link p. 

(4.1 f) 

(4.1 g) 

Then in the case in which there are no floating arms and in each gear mesh one pair 
axis is fixed, the force analysis can be carried out as follows: 

Step 4: Force and Torque Determination 
*Associate a force, Fpq, with edge pq. This is the force exerted by link p on link q 
through the kinematic pair, pq. 

*Associate a torque, Tpq, with each force, Fpq, as in equations (4.1). 
* For each moving link (q) having a fixed axis, write a scalar torque-balance equation: 

~, Tpq + Tq = 0. (4.2a) 
P 

For T~ use the expressions given in equations (4. lb, e, f). 
*For each floating link (q) (link without a fixed axis), write one scalar torque- 
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balance equation and one scalar force-balance equation: 

Y., Tin+ Tq = 0 (4.2b) 
lo 

Y., F m =  0. (4.2c) 
is 

For  T~  use the expressions given in equations (4. lb, e, f). 
*Solve equations (4.2a, b, c) for F ~ .  T o and Tq as a system of 2(v - 1 ) -- ef equations 

in as many unknowns, where v denotes the number of vertices of the graph, and ef 
the number of turning edges with fixed pair axes. It is assumed that all but one of 
the external torques are given. 

* Find the vectors F~,  T ~  from equations (4.1). 

Proof of  the determinacy of  this procedure is given in Appendix II. 
We continue with Glover 's  # 1 1 Drive as illustration. We assume a known input 

torque, Ttn, on link 1; T2n is the load torque on link 2. 
The unknowns are: F15, F35, F2s, F36, Fe2, 7"2. 
Links with fixed axis: 1,2, 3, 6 (one torque equation each). 
Floating link: 5 (one torque and one force equation). 
The equations of  statics are: 

Link 1 : T~ + Ts~ = 0; 

o r  

astF51 
Tt + ( 1 -- Ns~) = 0 (4.3a) 

Link 2: T 2 +  T ~ 2 +  T62 = 0,  

o r  

a52Fs2 ae2F62 
T2 q" "~ = 0 (4.3b) 

( 1 - N s z )  (1--Ne2) 

Link 3: T u +  T6a = 0; 

o r  

asaFaa 
a15F53 + = 0 (4.3c) 

(1 - - N ~ )  

Link 4: Fixed link; no equation necessary. 
Link 5: T15+ Tas+ T25 = 0; 

OF 

atsFln + 0 +  azsFz5 = 0  (4.3d) 
(1 - N , ~ )  (1 - N~.~) 



o r  

L i n k  6: 

Fls + F~  + F25 = 0 

Tss + T26 --~ 0 ;  
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(4.3e) 

aa~Fae a2~/~26 = 0. (4.3f) 
( i - - - - ~ )  ~ (1 --N,s) 

For the proportions given by J. H. Glover, we have 

a51 = asz = ae= = a~ = p (say). 

Using these proportions and equations (4.1), the solution to equations (4.3) may be 
expressed as 

Fsl = ( - T J p )  ( 1 - Ns0(~sl x n) 

Fs2 = (TI/p) (N51/Ns2) (hs2 x n) 

F ~  = ( TIIp)[1 - (N~l/N52)](fisl x n) 

Fe3 = ( - T J p ) ( 1  - N~)[1 -- (Ns~/N52)](~3 × !1) 

F2e = (T1/p)(N~/N82) ( 1 - N e ~ ) [ 1  - (N~I/Ns~)](h2e × n ) .  

(4.4a) 

(4.4b) 

(4.4c) 

(4.4d) 

(4.4e) 

The torque, T2, is given by equation (4.3b): 

Fs~ F~ ] 
T2 = - - p  (1--Ns~) ÷ (1:~re2) 

which, with the aid of equations (4.4b, e), gives 

- -  (4.4f) 

C h e c k  #1: All fixed reactions are omitted; these can be obtained separately, if 
desired. 

C h e c k  #2: All coefficients of the equilibrium equations are constants. 
C h e c k  #3: Balance number of equations vs. number of unknowns. 

For example, in Glover's #11 Drive, v = 6 and el = 4 (edges 31, 14, 64, 42). Hence, 
the number of equations and of unknowns should equal 2(6 - 1 ) - -  4 = 6 .  

C h e c k  #4: Check that power INTO mechanism = power OUT of mechanism. 
In Glover's #1 1 Drive, combining equation (4.4f) with the first of equations 

(3.4), we have: 

Tlcol + T2co2 = 0, which checks the power flow into and out of the mechanism. 

5. Power Flow 
We consider the power flow in the absence of energy losses due to friction. It is 

convenient to associate a power flow, P~, with edge p q  as follows: Ppq = power trans- 
mitted by link p to link q across kinematic pair, p q  in the direction ofp to q. 
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Then 

P ~  = F~ .  V~ (5.1) 

where Fm is the transmitted force across the pair represented by edge pq, as defined 
previously [equation (4. I)], and Vm denotes 

(i) the linear velocity of the pair axis of pair pq, i fpq is a turning pair; 
(ii) the velocity of the pitch point of gears p and q, i fpq is a gear pair. 
Limiting ourselves once again to the case in which there are no floating arms and 

in which there is a fixed pair axis in each gear mesh, it is readily shown, using the 
methods of Appendix I, that: 

Case (i): P ~  = -Fma~-~p = - P ~  (5.2a) 

where edge pq lies in fundamental circuit (qr)(p), so that p represents the gear carrier 
(axis of gear r is fixed). 

Case (ii): P m =  Fnqa#-------~n= - P ~ ,  (5.2b) 
1 - N ~ ,  

where p denotes the link with the gear having a fixed pair axis. 
If Pm is positive, the power flow is directed from link p to link q; if Pro is negative, 

the power flow is directed from link q to link p. The calculations are outlined in the 
following step: 

Step 5: Power Flow 
*Associate a directed power flow, P~,  with each edge, the assigned direction for 

positive P ~  being from link p to link q. 
*At any vertex the flow of power into the vertex is equal to the flow of power 
away from the yertex ("current law"). 

*At any vertex incident at more than 2 edges representing pairs in which both 
elements are moving, the power branches. 

*Calculate the power flow in each branch. Use equation (5.2a) for power flow 
across a turning edge. Use equation (5.2b) for power flow across a geared edge 
("resistance law"). Generally: 

Ppq = Fpq. Vpq 

* Continue until entire power flow is determined. 

For example, in Glover's # 11 Drive, the power input (Px) is Tlr.o 1. Applying the 
current law to vertex 1, we have: 

Pt5 = Pl. 

At vertex #5 there is a branching of power: 

P52 = Fsz • V52. (5.2b) 
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Since edge 52 is a geared edge, use equation (5.2b) for the power flow: 

P52 = Fs2ds2¢°2 ( p  = 2). 
( 1 - -  N52) 

Substituting for Fs2, from equation (4.4b), we obtain: 

PulP1 = Nsl/(RN52) = 0"2. 

Hence, the power flow across edge 52 is directed from link 5 to link 2 and is equal to 
20 per cent of input power. 

Check # 1: Power flow across a kinematic pair, one of whose elements is fixed, is 
zero. 

In Glover #11,  the pair axes of pairs 13, 14, 64, 42 are in this category. Hence, 
P~s = P14 = P u  = P42 ---- 0. 

Check #2:  Power flow across vertices of degree 2 (incident at two edges): power 
IN equals power O U T  (fixed edges do not count in this check). 

In Glover #11,  this implies that P s a -  Pa~--Ps=-- (0.8)P1. This also shows that 
the power balance for vertex 2 gives P1 = P2, where P: represents the power flow out 
of the mechanism. 

Check #3: the power flows are constant multiples of the input power. If the angular- 
velocities of the links are constant, the power flows are, therefore, constant. 

6., Conclusion 
Simple, general programmable procedures have been described for the kinematic 

analysis, static force analysis, and power flow without friction, of spur gear epicyclic 
gear trains, directly from the kinematic structure. In order to illustrate the general 
approach, we have limited ourselves to the simpler aspects of gear-train design. The 
inclusion of friction, elastic effects, dynamic considerations, floating arms, and singular 
configurations can be developed along similar lines, but would take us beyond the scope 
of this introductory exposition. 
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Appendix 1 : Static Torque and Force Analysis 
Referring to Fig. 2. the geometry i s  a s  follows: 

r~--rj = aofi o 

rJr~ = N O = 1/N~ 

(A1) 

(A2) 

(A3) 

- , . - P : ~ v .  - 

"j  r, 
9" 

a /  -Axis  of pair ( ih - )  
Li~ d I I j  - Alis of pair ( j ~ )  

Figure 2. Geometry of a simple gear mesh. 

H e n c e ,  
r~ = [ N o a o / ( N o -  1) ]~  

rj = [ a o / ( N o -  1)fito 

where 
a~ = aoio 
a u = aj~ 

no ffi - -  a)l. 

With the unit 
a s  follows: 

Fo 
Fo 
To 

(A4) 

(AS) 

(A6) 

(A7) 

(A8) 

normal, n, in the direction of  a positive angular-velocity vector,  the forces and torques are 

= - -  Fjt = F o  (au x n)  ( A 9 )  

= Fj~ ( A  1 0 ) t  
= r ~ x F  o = Ton ( A l l )  

To = aoFij /(  1 -- N o  ) (A 12) 
F~ = Fik(fio x n) (A13) 
Fkt = Fk~(ao x n) (AI4) 
Fik = --Fk~ (A 15)t 
Tik = ajt × Ftk = Tikn (A16) 
To¢= pFtk (A 17) 

p = ao (ifaj is fixed)~ 
or 0 (if a~ is fixed)J (A 18) 

Tk~ = 0 (A 19) 

Appendix I1: Proof of Determinacy of Force-Analysis Procedure 
No. of  equations : No. o f  moving links (v -- 1 ) plus no. o f  floating links (if).  
But lr = No. of  moving links less number of  vertices (v r) incident at edges with fixed-location (turning) 

pair axes, excluding the vertex representing the fixed link. 

-tln order  to satisfy Newton ' s  3rd Law (Action and reaction are equal and opposite). 
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Let ef denote the number of edges with fixed (turning) pair axes. The subgraph consisting of the edges e~ 
and their endpoints must be connected, but cannot have any circuits. Hence, as in the case of trees, the 
number of vertices in the subgraph equals (e~ + 1). But the number of vertices is equal to (vs + 1). 

Hence, vr = e~ and 1~ = (v - 1) - es. Hence, the number of equations is equal to 2(v - 1 ) - e~. The number 
of unknowns = Total number of edges less number of edges with fixed pair axis plus 1 (unknown torque) = 
e- -e~+ 1. 

For single-degree-of-freedom trains, e = 2 ( v - 1 ) -  1. Hence, the number of equations is equal to the 
number of unknowns. Provided that the equations are independent, the procedure is, therefore, determinate. 
We assume also that all but one of the external torques (usually the output torque) are known. 

When the degree of freedom of the gear train is more than one, the argument is similar, provided we 
assume that the number of unknown external torques to be equal to the degree of freedom of the train. 

In the case of gear differentials, these conclusions need to be modified, because of the presence of a link 
(the fixed link) with but a single pair axis which modifies the degree-of-freedom equation. It is not difficult 
to do so, but this would take us beyond the scope of this simple exposition. 


