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Abstract

The purpose of this paper is essentially tutorial: to help recast the classical text-
book chapter on gear trains in a modern vein. Hopefully this involves general
methods, avoiding ad-hoc reasoning and unnecessary complexity. We believe
that recently developed methods(1, 2, 4], employing a graph representation of
kinematic structure, are suitable for this purpose. The procedures for kinematic
analysis, force analysis, and power-flow determination are outlined in simple step
fashion, using, for purposes of illustration, a fairly complex, coupied epicyclic
drive shown by Glover[5]. It is hoped that the simplicity of the method will com-
mend itself both to the engineering student as well as to the practicing engineer.

Zusammenfassung-— Kinematik und Statik eines gekoppelten epizyklischen
Zahnradgetriebes: F. Freudenstein und A. T. Yang.

Der Zweck dieses Aufsatzes ist ein vorwiegend methodischer: er soll helfen, die
klassischen Lehrbuchabschnitte (iber Radertriebe in eine moderne Fassung
umzuformen. Dies bedingt aligemeine Methoden unter Vermeidung unmotivierter
Vorgangsweisen und unnétiger Verwicklungen. Wir glauben, daB die kiirzlich
entwickelten Methoden[1, 2, 4], welche kinematische Strukturen durch Graphen
darstellen, fir diesen Zweck geeignet sind. Die Verfahrensweisen zur kine-
matischen Analyse, zur Bestimmung der Kréfte und zur Ermittlung des
Kraftflusses werden stufenweise auseinandergesetzt, wobei zur Erlauterung ein
ertréglich komplexes, von J. H. Glover[5] betrachtetes gekoppeltes Planetenrad-
getriebe herangezogen wird. Es ist zu hoffen, daB die Einfachheit der Methode
sowohl den Ingenieurstudenten als auch den praktizierenden Ingenieur
ansprechen wird.

Pellome — KnHeMaTAKa H CTaTHKA SMHUMKIHYECKOH Depenayd ¢ LWIHHAPHYCCKHMHM HOPAMO3yGhiMu
xonecamu. @. dpolinenurreits ¥ A. SHr.
Lesnp 3TOM CTaThH —~ 3TO MO CYLIECTBY KOHCY/NbTAlUMS: MOMOYb HANMHMCATH 3aHOBO B COBPEMCHHOM IyXe
rnasy KJIacCHYecKoro yyeOHMKA, NOCBAUICHHYIO 3y6YaThiM nepeaavyaM. 370 BrevueT 3a coboll npumeneune
o0IIAX METONOB ¥ H30EraHue CNEUMANLHOTO PACCYKACHHS H HEHYXKHOH CIOXKHOCTH. ME! yBepeHH, wro
HEeJlaBHO pa3BHTbie METOIb [1, 2, 4], OpHMEHSAIOLNEe IHArPAMMHOE HW300paxeHHe KHHCMATHIECKOR CTpy-
KTYpbi, COOTBETCTBYIOT 3TOH uem. HamedeHb! METONMKH KHHEMAaTHYECKOro aHallH3a, aHANM3a CHN H
OOpERENIeHHs NOTOKAa MOUIHOCTH C OPMMEHEHUEM Ul MIUTIOCTPALIKE AOCTATOMHO CIOXHON SNMMIAKIHYCC-
Koit nepenaym, omucansoit [x. I'nosepom [5].

ABTOpBI HAJCIOTCHA, YTO NPOCTOTA MeToAa OyAeT IoJie3Ha CTYAEHTAM TCXHHYECKHX 3aBEACHHE X
npodecCHORAIBHBIM HHKEHEPAM.
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1. Introduction

IN RECENT years, there has been an upsurge of interest in planetary gear trains. The
many valuable publications on the subject[1-11] (we can list only very few) recognize
the need for a systematic development. The following is dedicated towards the same
goal. The emphasis is on generality with a minimum of human decision-making, thereby
freeing the engineer for the more creative aspects of gear design and resulting in
methods which are suitable for automatic computation. It is hoped also that the engin-
eering student, who has too often in the past been repelled by the archaic nature of the
usual textbook treatment of the subject, may find some challenge in the present
approach.

2. Graph Representation of Kinematic Structure

Essentially this is a schematic diagram which answers the question: “which link is
connected to which other link by what kind of a joint (pair)”. More precisely, we have:

Step 1: Kinematic Structure

*Number each link (1,2, 3,...).

*Label axes of turning pairs (a, b. ¢, .. .).

*Represent each link by a correspondingly numbered point (vertex).

*A gear mesh between two links is represented by a heavy line (geared edge)
connecting the corresponding vertices.

*A turning pair between two links is represented by a light line (turning edge)
connecting the corresponding vertices: Label each turning edge according to its’
pair axis (a, b,c....).

*Identify the fixed link by drawing a small circle around the corresponding vertex

The diagram defined in Step 1 is called a graph. The size and shape of the diagram
are immaterial; only the topology matters.

Figure la shows a functional schematic of a coupled, epicyclic drive shown in
Glover(5] as Drive # 1 1. In the following we shall refer to this drive simply as Glover
# 11. Each link has been numbered and the different axes of the turning pairs identified.

Figure 1b shows the graph of the mechanism. As will be discussed later, when
several planet gears are in parallel (e.g. 5 and 5’ or 6 and 6’) only one is shown in the
graph. The others are kinematically redundant, but serve to distribute the load.

The graph has certain characteristics, which are useful in analyzing gear trains and
which may also be regarded as checks on the accuracy of Step 1:

Check #1. The diagram (subgraph), consisting only of the turning edges and their
endpoints, contains all the vertices of the graph, but no circuits (such a graph is called
atree).

This is due to the constancy of the center distance between gears in mesh and the
potentially unlimited, proportional rotations of all links. This implies that each gear
has a turning pair concentric with its axis and that there can be no circuit involving
turning pairs only.

In Fig. 1b. this subgraph (tree) consists of all turning edges. e.g. edges (35). (13).
(14), (46), (42) and the 6 vertices.

+An extensive bibliography is given by Z. Levai: Bibliography of planetarv mechanism, BME, Budapest,
1969.
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Figure 1a. Functional schematic of coupled epicyclic drive indicated as Drive #11
in Ref. [5] (Glover).

Check #2. Each geared edge can be associated with a fundamental circuit of the

graph.

We shall call these fundamental circuits f-circuits for short. Each f-circuit consists
of one geared edge and the turning edges connecting the endpoints of the geared edge.
There is only one way of selecting these turning edges, if the convention is adopted
that when traversing the edges of the tree to go from one end-point to the other, no
turning edge may be retraced (in the language of graph theory, the tree path is unique).

For example. in Fig. 1b, the f-circuits are:

[EXTERNAL GEARS : zoﬂ

Circuit I: (15) (53) (31)

Circuit I1: (25) (53) (31) (14) (42)
Circuit I1I: (62) (24) (46)

Circuit I'V: (36) (64) (41)(13)

3 - 5

1 (INPUT)

2 (OUTPUT)
Figure 1b. Graph of epicyclic drive shown in Fig. 1a.
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Check #3. In each fundamental circuit, there is exactly one vertex, the turning
edges incident at which represent different pair axes. It is called the transfer vertex.

In each gear mesh, the gear carrier (also called the arm) maintains the constancy of
the center distance between the gears. The vertex representing the gear carrier is
incident at turning edges representing the pair axes of the meshing gears. This vertex
is the transfer vertex.

In Fig. 1b, the transfer vertices are as follows:

Circuit I: Vertex 3 (pair axes a, b)
Circuit I1: Vertex 3 (pair axes a, b)
Circuit I1I: Vertex 4 (pair axes b, ¢)
Circuit I'V: Vertex 4 (pair axes b, ¢)

Check #4. The diagram (subgraph) consisting only of the geared edges and their
endpoints may have no circuits.

Otherwise, special dimensions would be required for movability of the mechanism.
Although such cases can occur, they are excluded in the present analysis. Circuits
with only geared edges also can point to the existence of planet gears in parallel. For
example, if gears 5’ and 6’ had been included in the graph shown in Fig. 1b, the circuits
(3-6-2-6'-3) and (1-5-2-5’-1) would have involved geared edges only. We therefore
omit all but one of the identical gears (planets), the axes of which are turning-pair
connected to the same member.

Check #5. All turmming edges having identical pair axes must be connected (and can
have no circuits).

Otherwise the center distances could not remain constant. In Fig. 1b, these are
edges (31) (14) (42).

Check #6. The degree-of-freedom equations for the gear train are:

Jr=JctF
L=j;

where / = number of links, j» = number of turning pairs, j; = number of gear pairs,
L = number of fundamental circuits and F = degree of freedom of gear train.

In Fig. b, for example, /=6, j; =5, j; = L =4 and F= 1. We conclude that this is a
single-degree-of-freedom gear train.

The first equation is obtained directly from the basic tree property: number of
vertices of tree exceeds number of edges by unity. The other equations follow from the
first equation and the freedom equations for mechanisms.

We note that in the graph representation of kinematic structure, we do not dis-
tinguish between internal and external gears and several gears may be part of one rigid
link, and thus are represented by a single vertex.

2 Kinematic Analysis
We outline the procedure in terms of several steps.

Step 2: Angular-Velocity Equations
*Identify each fundamental circuit symbolically as (ij) (k), where i, j represent the
links containing the gears in mesh and k the gear carrier (transfer vertex).
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*For each fundamental circuit. The angular-velocity equation is:
wi—oNz+ o (N;—1)=0 (3.1
where w;, w;, wy, denote the angular velocities of links i, j, k and Ny ==T,/T,,

where T;, T, denote the number of teeth on gears i, j, respectively, and the ratio
is positive or negative according as the gear mesh is internal or external

There are as many equations of type (3.1) as there are gear meshes (or f-circuits).
The equation is readily derived by considering the motion relative to the arm:

(w; — o) (w;— wi) = Ny
In Glover’s #11 Drive (Fig. 1b), the angular-velocity equations are:

Fundamental circuit  Angular-velocity equations

Circuit I: (15) (3) w, — wsN5; +w3(Ns; —1) =0
Circuit II: (25) (3) Wy — (D5N52 + 0)3(N52 - 1) =0 (3'2)
Circuit 1I1: (26) (4) we — wgNgo + Wy(Ngg—1) =0
Circuit IV: (36) (4) w3 — wgNgz+ wg(Ngs—1) =0

Check #1. The sum of the coefficients of the angular velocities in each equation is
Zero.
Check #2. Balance number of equations vs. number of unknowns.

In Glover’s #11 Drive, link 4 is fixed, so that w, = 0. Link 1 is the input link, the
angular velocity of which, ,, is assumed known. This leaves 4 equations (equations
(3.2)) in the 4 unknowns: w,, ws, ws, ws.

The angular-velocity equations are linear, simultaneous algebraic equations. Their
solution is outlined in the next step.

Step 3: Solution of Angular-Velocity Equations
*Solve the angular-velocity equations for the unknown angular velocities
*Solution for single-degree-of-freedom gear trains based on Cramer’s rule:

Let A, be the value of the determinant of the square matrix obtained by deleting
the m' and n** columns of the coefficient matrix of the angular-velocity equations,
including the terms containing the fixed link, f.

Then the angular-velocity ratio of links p, g is given by:

Do e (PGS [Ay
wg =D lp—f1.lg—fl [Aq;] 3-3)

For example, in the Glover #11 Drive, the (4 X 6) coefficient matrix is:

10 Ny—1 0 =N, 0
0 1 Nyp,—1 0 =Ny 0
01 0 Ng—1 0 —Ng
00 1 Nes—1 0 —Ng
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Forp=1,9g=2,f=4,wehave

0 N51—1 —N51 0
1 Nge—1 —N 0 — — —
Ay = 1 520 052 —Ng = —N5:Ngz — Neg(Ns2 — Nyy).
1 Ngyg—1 —Ns; O
0 Nyp—1 —N 0
Ay = 0 56 052 —Ng, = N;53Nes.
1o 1 0 —Ng;

From Equation (3.3) we obtain the angular velocity ratio

Similarly, we find that:

wy/w, = 1/R
wy/w, = Ngg/(Ne2R) (3.4
wsfw, = [1—(1 —st)(Nsa/st)]/(Rst)

wg/w; = 1/ (RNgy).
The gear ratios given in Glover’s #11 Drive are as follows:

N5 ==20/20=—1; Ng =20/60=1}

This gives the following angular-velocity ratios:
Wy Wyl Wy Wyl wsiwg: =15:—1:3:0:—9:—3
Since the angular-velocity equations are unaffected if each angular velocity is
increased by the same constant, we can find the angular velocities when a link other

than link 4 is held fixed, by adding to each angular velocity a constant equal to the
negative of the angular-velocity of the new fixed link, as shown in the following table:

Fixed link Angular-velocity ratios
wy (2 Wy Wy Wy weg
1 0 —16 —-12 —15 ~24 —18
2 16 0 4 1 -8 -2
3 12 -4 0 -3 —-12 )
4 15 -1 3 0 -9 -3
S 24 8 12 9 0 6
6 18 2 6 3 —6 0
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4, Static Force and Torque Analysis

We consider the case without friction. Before deriving the equations of equilibrium,
we consider the forces and torques associated with a fundamental circuit: (ij) (k).
Details of the derivations can be found in Appendix 1.

Center distance. a; = ayé,;; denotes the vector distance from the axis of gear i to
the axis of gearj; ay = a; and 4, is a unit vector in the direction of ay;.

Unit normal. n represents a unit vector in the direction of a positive angular-velocity
vector.

Reactions associated with geared edge, ij

F;; = tangential force exerted by gear i on gear j
=Fu(ﬁﬁxn), WithFU——'Fji (413)
T, = torque exerted by F;; about axis of gear j
= Tyn, where T;; = (ayF;)/(1 — Ny). (4.1b)

Reactions associated with turning edge, ik

F, = tangential force exerted by gear i on carrier £
= Fik(éﬁ X n), with Fy = —Fki 4. 1¢)

F,; = force exerted by carrier £ on gear i
=—Fy

4.1d)

T, = torque exerted by F;, about fixed axis of gear carrier k
= T",n, where T(k = pF,'k
and p is the distance between the fixed pair axis of link k and the pair
axis represented by edge ik (i.e. p is either equal to a;; or 0).

(4.1e)

T = torque exerted by force F,; about axis of gear i (4.1f)
=0, )
External torques
T, = T,n represents the external torque acting on link p. 4.1g)

Then in the case in which there are no floating arms and in each gear mesh one pair
axis is fixed, the force analysis can be carried out as follows:

Step 4: Force and Torque Determination
*Associate a force, F,,,, with edge pq. This is the force exerted by link p on link ¢q
through the kinematic pair, pq.
*Associate a torque, T,,, with each force, F,,, as in equations (4.1).
*For each moving link (g) having a fixed axis, write a scalar torque-balance equation:

% Tpet+To=0. (4.2a)

For T, use the expressions given in equations (4.1b, e, f).
*For each floating link (g) (link without a fixed axis), write one scalar torque-
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balance equation and one scalar force-balance equation:
% Tt Ty=0 (4.2b)
§ Fpe=0. (4.2¢)

For T ,, use the expressions given in equations (4.1b, e, ).

*Solve equations (4.2a, b, ¢) for F,,, T, and T, as a system of 2(v — 1) — e, equations
in as many unknowns, where v denotes the number of vertices of the graph, and ¢,
the number of turning edges with fixed pair axes. It is assumed that all but one of
the external torques are given.

*Find the vectors F,,, T,, from equations (4.1).

Proof of the determinacy of this procedure is given in Appendix II.

We continue with Glover’s #11 Drive as illustration. We assume a known input
torque, 7,n, on link 1; T,n is the load torque on link 2.

The unknowns are: Fs, Fas, Fys, Fgg, Fea, Ts.

Links with fixed axis: 1, 2, 3, 6 (one torque equation each).

Floating link: 5 (one torque and one force equation).

The equations of statics are:

Link1: T,+Ts, =0;

or
as Fs,
T,+—2L35L_— 4.3a
! (1 —N5l) ( )
Link 2: Tz + T52+ Tsz = 0;
or
a5, Fs, ag2F gy
T,+ =0 4.3b
: (1—-Ns,) (I_st) ( )
Link3: Tg3+ Tes=0;
or
a63F63
+ —_— 0 .
aisF's3 (1—Ng) (4.3¢)
Link 4: Fixed link; no equation necessary.
Link §: T15+ T35+ T25 = 0;
or

aliFlﬁ +0+ azQFzg =0 43d
(I“le) (I—st) ( )
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Fist+ Fas+Fes =0 (4.3e)

Link 6: Ty+T=10;

or

aseF 36
(I“Nss)

asel 26 _
TN~

+ 4.3f)

For the proportions given by J. H. Glover, we have
Gs; = a5y = dgy = Ggz = p (sAY).

Using these proportions and equations (4.1), the solution to equations (4.3) may be
expressed as

Fs5; = (—T,/p) (1 — Nj5,)(&s; X n) (4.4a)
Fs; = (T4/p) (N51/Ns;) (8152 X m) (4.4b)
Fs3 = (T1/p)[1 — (Ns:1/N52)l(é5, X ) (4.4¢)
Fos = (=T1/p)(1 — Ng3)[1 = (Ns1/Ns3)} (g3 X ) (4.4d)
Fas = (T1/p)(Nes/Nez) (1— Ng2)[1 — (Ns1/Nis2))(é26 X m). (4.4e)

The torque, T,. is given by equation (4.3b):

T2=—p[ F52 FGZ ]

(1 _N52)+ (1 ‘ch)

which, with the aid of equations (4.4b, ¢), gives

—(%)=1—(;—\V—,:-:-—1)(%—2-1)=R (4.4f)

Check #1: All fixed reactions are omitted; these can be obtained separately, if
desired.

Check #2: All coefficients of the equilibrium equations are constants.

Check #3: Balance number of equations vs. number of unknowns.
For example, in Glover’s #11 Drive, v = 6 and ¢, = 4 (edges 31, 14, 64, 42). Hence,
the number of equations and of unknowns should equal 2(6 —-1) —4 = 6.

Check #4: Check that power INTO mechanism = power OUT of mechanism.

In Glover’s #11 Drive, combining equation (4.4f) with the first of equations
(3.4), we have:

T 0, + Tow, = 0, which checks the power flow into and out of the mechanism.

5. Power Flow

We consider the power flow in the absence of energy losses due to friction. It is
convenient to associate a power flow, P,,, with edge pq as follows: P,, = power trans-
mitted by link p to link g across kinematic pair, pq in the direction of p to g.
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Then
Ppe=Fpq.Vpq (5.1

where F,, is the transmitted force across the pair represented by edge pq, as defined
previously [equation (4.1)], and V,, denotes

(i) the linear velocity of the pair axis of pair pq, if pq is a turning pair;

(ii) the velocity of the pitch point of gears p and g, if pq is a gear pair.

Limiting ourselves once again to the case in which there are no floating arms and
in which there is a fixed pair axis in each gear mesh, it is readily shown, using the
methods of Appendix I, that:

Case(i): Poq=—Fpaqw,=—P, (5.2a)

where edge pq lies in fundamental circuit (gr)(p), so that p represents the gear carrier
(axis of gear r is fixed).

Case (ii): P, =—12do% _ _p (5.2b)

where p denotes the link with the gear having a fixed pair axis.

If P,, is positive, the power flow is directed from link p to link g; if P,, is negative,
the power flow is directed from link g to link p. The calculations are outlined in the
following step:

Step 5: Power Flow

* Associate a directed power flow, P, with each edge, the assigned direction for
positive P,, being from link p to link q.

*At any vertex the flow of power into the vertex is equal to the flow of power
away from the vertex (‘“‘current law™).

*At any vertex incident at more than 2 edges representing pairs in which both
elements are moving, the power branches.

*Calculate the power flow in each branch. Use equation (5.2a) for power flow
across a turning edge. Use equation (5.2b) for power flow across a geared edge
(*‘resistance law”). Generally:

Ppa=TFpq. Vpq

*Continue until entire power flow is determined.

For example, in Glover’s #11 Drive, the power input (P,) is T,w,. Applying the
current law to vertex 1, we have:

P 15 — P 1
At vertex #5 there is a branching of power:

Psy =Fsz . Vse. (5.2b)
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Since edge 52 is a geared edge, use equation (5.2b) for the power flow:

= Fualype =
P52 (1 _st) (P 2)

Substituting for F,, from equation (4.4b), we obtain:
P5,/Py = N5;/(RN35,) = 0-2.

Hence, the power flow across edge 52 is directed from link 5 to link 2 and is equal to
20 per cent of input power.

Check #1: Power flow across a kinematic pair, one of whose elements is fixed, is
zero.

In Glover #11, the pair axes of pairs 13, 14, 64, 42 are in this category. Hence,
P13=P‘4=P“=Pu=0.

" Check #2: Power flow across vertices of degree 2 (incident at two edges): power
IN equals power OUT (fixed edges do not count in this check).

In Glover #11, this implies that Pg; = Py = Pg, = (0-8)P,, This also shows that
the power balance for vertex 2 gives P, = P,, where P, represents the power flow out
of the mechanism.

Check #3: the power flows are constant multiples of the input power. If the angular-
velocities of the links are constant, the power flows are, therefore, constant.

6.. Conclusion

Simple, general programmable procedures have been described for the kinematic
analysis, static force analysis, and power flow without friction, of spur gear epicyclic
gear trains, directly from the kinematic structure. In order to illustrate the general
approach, we have limited ourselves to the simpler aspects of gear-train design. The
inclusion of friction, elastic effects, dynamic considerations, floating arms, and singular
configurations can be developed along similar lines, but would take us beyond the scope
of this introductory exposition.
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Appendix 1: Static Torque and Force Analysis
Referring to Fig. 2, the geometry is as follows:

Link #

r—r = ayldy (AD
rfr;=Ny=1/Ny (A2)
I = Ny, (A3)
P
1 2
‘9. r,

a; -Axis of pair (¢ £)
./‘ - Axis of pair (5 £ )

Figure 2. Geometry of a simple gear mesh.

Hence,

where

£ = [Nyag/(Ny—1)]ay (A4)
;= [ay/ (N —1)]ay (A5)
ay = ady (A6)
Ay = aj (A7)
dy=—dy, (A8)

With the unit normal, #, in the direction of a positive angular-velocity vector, the forces and torques are

as follows:

Fy=—Fy=Fy(dyxXn) (A9)
Fy=Fy (A10)t
T,=r,xF, = T;n (A11)
Ty = a,Fyl(1—Ny) (A12)
Fu = Fyla; X m) (Al13)
F = Frldy X m) (A14)
Fa=—Fu (A1)
Ty =a;XFy=Tyn (A16)
Tu=pFu o (A17)
p = ay (if a; is fixed)

or 0 (ifa; is ﬁxed)} (A18)

T =0 (A19)

Appendix II: Proof of Determinacy of Force-Analysis Procedure

No. of equations = No. of moving links (v — 1) plus no. of floating links (/,).
But /, = No. of moving links less number of vertices (v,) incident at edges with fixed-location (turning)

pair axes, excluding the vertex representing the fixed link.

+1n order to satisfy Newton’s 3rd Law (Action and reaction are equal and opposite).
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Let e, denote the number of edges with fixed (turning) pair axes. The subgraph consisting of the edges e,
and their endpoints must be connected, but cannot have any circuits. Hence. as in the case of trees, the
number of vertices in the subgraph equals (e,+ 1). But the number of vertices is equal to (v, + 1).

Hence, v,= ¢;and I, = (v~1) — e;. Hence. the number of equations is equal to 2(v— 1) — e;. The number
of unknowns = Total number of edges less number of edges with fixed pair axis plus 1 (unknown torque) =
e—e+1.

For single-degree-of-freedom trains. ¢ = 2(v—1) — 1. Hence, the number of equations is equal to the
number of unknowns. Provided that the equations are independent, the procedure is, therefore, determinate.
We assume aiso that all but one of the external torques (usually the output torque) are known,

When the degree of freedom of the gear train is more than one, the argument is similar, provided we
assume that the number of unknown external torques to be equal to the degree of freedom of the train.

In the case of gear differentials, these conclusions need to be modified, because of the presence of a link
(the fixed link) with but a single pair axis which modifies the degree-of-freedom equation. 1t is not difficult
to do so, but this would take us beyond the scope of this simple exposition.



